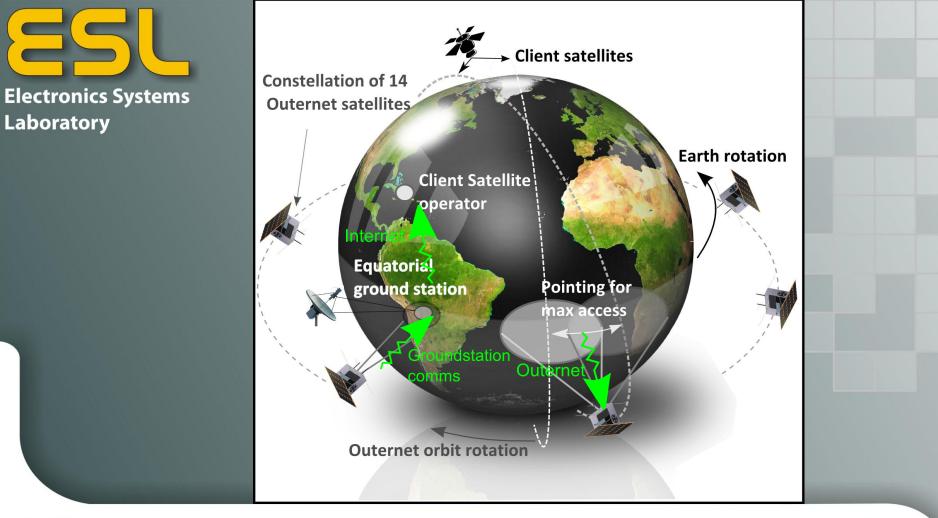


The Outernet A novel satellite communication relay constellation



- Increased number of CubeSat Launches
- Most using UHF/VHF frequencies
- Why a similar groundstation for each?

Introduction

S Concept/Proposition E

Altitude of 900km

- Higher than most LEO satellites (clients)
- Long communication window with GS
- Below Van Allen radiation belt
- Equatorial orbit
 - Pass equatorial GS every orbit

Orbit Selection

Does not pass South Atlantic Anomaly

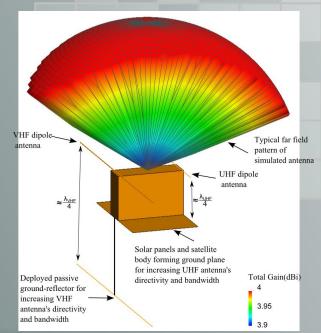
- Client pass Outernet twice each orbit
 - More passes/day than classical GS
- Each Outernet satellite independent
 - Modular
 - Expandable
- Outernet simulates GS, no reconfiguration for client satellite needed
- Advantages over amature radio, such as: data encryption and throughput

Motivation

- Phase 1 (demonstration of concept)
 - Build first satellite with in-house products and expertise
 - Work with ISIS for launch
 - Test with existing CubeSats
- Phase 2(expansion of constellation)
 - Design larger improved/refined satellite
 - Iteratively launch and improve

Implementation

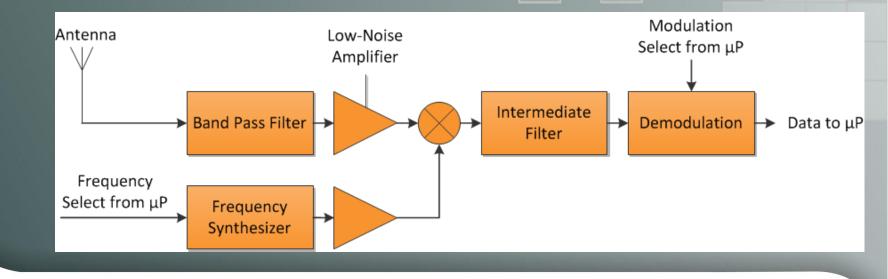
Technical Design


- Satellite Design
 - Comms equipment
 - ADCS
 - Power/Thermal
- Constellation Design
 - Constellation Structure/Access Times
 - Phasing/Deorbiting

- Communication requirements
 - Maximum access timeLarge bandwidth
- Antenna design
 - Simple dipole antenna
 - Passive reflector
 - UHF -> solar panels
 - VHF -> deployable
 - Pitch tracking

P

Communication design



Transceiver electronics

– Doppler shift max = 20kHz

Software based synthesizers

Adjustable de/modulation schemes

Communication design (cont)

Momentum-biased stabilised

- Control modes
 - Detumbling
 - Phasing
 - Pitch-tracking
 - Momentum dumping

ADC design

- Foldable Z-axis panels
- Peak operation -> 16W
- Normal operation -> 10W average
- Thermal
 - Thermal simulation
 - Within recommended operating temperature

Power and Thermal

- Number of satellites affect:
 - Communication requirements
 - Data throughput
 - Financial costs of constellation

Constellation Size

Q

Constellation Size

C

- Number of satellites affect:
 - Communication requirements
 - Data throughput
 - Financial costs of constellation
- Results
 - Constellation of 14 satellites chosen
 - Analytical results show at least one pass each orbit for satellites below 700km
 - Numerical simulation confirms
 - Average between 17 875kB per pass

Constellation Size

Laboratory

Phasing

Space satellites evenly in orbit

- Four week Hohmann transfer
- 27g of fuel for each satellite
- Deorbiting
 - Use left over fuel to lower orbit
 - Use drag enhancer to deorbit aerodynamically
 - Estimated deorbit time of 14 years

S

Phasing and deorbiting

Phase 1 Budget

First Satellite Cost

- Employ 15 Engineers for 18 months
- All COTS components
- COTS Groundstation
- Operational costs
 - 2 Engineers for 10 years
 - Other technical (power, internet...)
- Total budget of €1.5M (Estimate)
- Each additional satellite €0.4M (Estimate)

Budget

Benefits for humankind

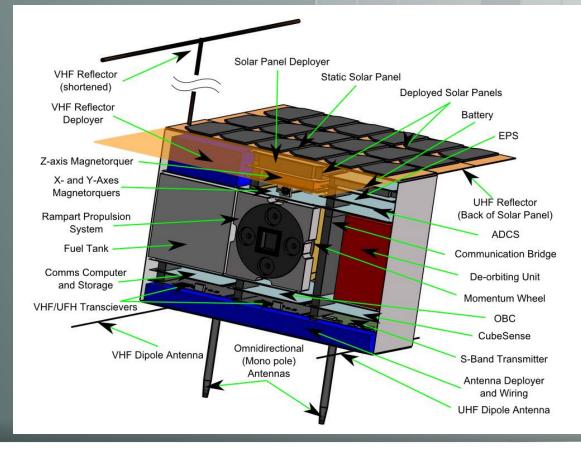
- Multiple applications
- Enhances benefits of all missions using the system
- Environmental advantages

Environmental

- Less land and material consumed by not building multiple groundstations
- Would aid disaster management and earth observation satellites

- Outernet is solution to redundant GSproblem
- Encrypted, private access to satellite data
- Significant Increase in data throughput and communication opportunities/day
- Low cost and easy to build/test prototype
- Modular design suited for expansion
- Benefits all satellite applications

Conclusion


Building an infrastructure for the future

Laboratory

Conceptual CAD model

Questions?

E